Randomly generate a valid AnansiWeb
or MultiFactor
object.
Usage
randomWeb(
n_samples = 10,
n_reps = 1L,
n_features_x = 8,
n_features_y = 12,
sparseness = 0.5,
tableY = NULL,
tableX = NULL,
dictionary = NULL
)
randomMultiFactor(n_types = 6, n_features = 100, sparseness = 0.5)
krebsDemoWeb(n_samples = 100, n_reps = 4L)
Arguments
- n_samples, n_reps
Numeric scalar
Number of samples and repeated measures of those samples to be generated. Ignored iftableY
andtableX
are provided. (defaults: 10 samples without repeats)- n_features_y, n_features_x
Numeric scalar
Number of features to be generated. Ignored iftableY
andtableX
are provided.- sparseness
Numeric scalar
, proportion: How rare are connections- tableY, tableX
A table containing features of interest. Rows should be samples and columns should be features. Y and X refer to the position of the features in a formula: Y ~ X.
- dictionary
A binary adjacency matrix of class
Matrix
, or coercible toMatrix
.- n_types
Numeric scalar
, number of types of features to generate- n_features
Numeric scalar
, number of features per type
Examples
# Make a random AnansiWeb object
randomWeb()
#> AnansiWeb S4 object with 10 observations:
#> tableY: y (12 features)
#> tableX: x (8 features)
#> Accessors: tableX(), tableY(), dictionary(), metadata().
krebsDemoWeb()
#> AnansiWeb S4 object with 400 observations:
#> tableY: Enzyme (8 features)
#> tableX: Metabolite (9 features)
#> Accessors: tableX(), tableY(), dictionary(), metadata().
randomMultiFactor()
#> A list of class MultiFactor,
#> 6 feature types across 5 edge lists.
#>
#> a b c d e f
#> a2b 100 100 . . . .
#> b2c . 100 100 . . .
#> c2d . . 100 100 . .
#> d2e . . . 100 100 .
#> e2f . . . . 100 100
#>
#> Values represent unique feature names in that edge list.
#>
#> Levels:
#>
#> a : 100 Levels: a_001 a_002 ... a_100
#> b : 100 Levels: b_001 b_002 ... b_100
#> c : 100 Levels: c_001 c_002 ... c_100
#> d : 100 Levels: d_001 d_002 ... d_100
#> e : 100 Levels: e_001 e_002 ... e_100
#> f : 100 Levels: f_001 f_002 ... f_100